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Abstract

Compared to text and audio, images can be an especially effective form of polit-
ical communication. It has become relatively easy to automatically label images for
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a result, scholars are increasingly using large-N image analysis to investigate contem-
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scholarship. First, researchers may want to visually explore an image corpus to discern
patterns before they begin assigning labels. Second, they may want to annotate im-
ages for the presence of complex theoretical mechanisms that cannot be easily assigned
using existing automated methods. Third, they may be primarily interested in study-
ing human annotation decisions. We demonstrate how unsupervised image clustering
can help researchers address each of these needs when dealing with large unbalanced
image corpora. We illustrate this using a corpus of images shared with the hashtag
#FamiliesBelongTogether on Twitter.
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1 Introduction

The proliferation of digital media and mobile communications, in combination with advances

in deep learning, has made the study of visual information an increasingly important do-

main of social science research (Joo and Steinert-Threlkeld, 2018; Torres and Cantu, 2020;

Webb Williams et al., 2020). A growing number of scholars are turning to convolutional

neural networks (CNNs), a type of supervised deep learning algorithm, to study large image

corpora. Some scholars are interested in visual communication per se, either as an outcome

variable (i.e. categorizing nonverbal political communication (Joo et al., 2019)) or as a pre-

dictor (i.e. which image features render politicians more favorable (Peng, 2018)). Others use

images to measure a quantity of interest that would be very difficult to measure otherwise,

such as the levels of violence in a large number of decentralized protests (Sobolev et al.,

2020), economic development based on nighttime lights imagery (Jean et al., 2016), or the

number of corrupted voting tallies in a rigged election (Cantú, 2019).

We identify three important limitations of using supervised learning CNNs for image

labeling. We then propose an unsupervised method that helps to addresses each limitation

by generating “topic” clusters of visually similar images from larger corpora. The first

limitation is that, in order to train a CNN, researchers need to know ahead of time the

particular objects or features they are looking for in the images. Once trained, the algorithm

automatically assigns the same universe of labels to other images, but it will only do so for

the features it has been trained to predict.1

Commercial image tagging services offered by companies such as Amazon, Google, and

Microsoft (likely CNNs) can predict a large number of image features (objects, people’s

gender and ethnicity, etc.). However, they do not offer complete lists of the features their

CNNs have been trained to recognize.2 Open source CNNs are a more transparent (and often

1For additional details on how CNNs work, see Webb Williams et al. (2020); Torres and Cantu (2020)
2Not to mention the known gender and race biases of these tools (Buolamwini and Gebru, 2018; Schwem-
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cheaper) option. The categories of these CNNs are known (i.e. the 1,000 objects included

in the ImageNet corpus) and the algorithms themselves are available from deep learning

libraries in Python and R (such as Keras, PyTorch, and TensorFlow) or from scholars who

have made their trained models accessible (i.e. Won et al. (2017); Kärkkäinen and Joo

(2019)).

Researchers can also “fine tune” pre-trained models to recognize additional image features

of interest (Webb Williams et al., 2020). But this assumes that they already know the image

features in the data that are relevant to their project. For example, suppose that a researcher

studying social movements is interested in symbols of collective identity that activate feelings

of group belongingness (Tajfel, 1981), increase voter turnout (Gerber et al., 2008), influence

attitudes on particular issues (Hassin et al., 2007), or inspire protest participation (Kharroub

and Bas, 2015; Casas and Webb Williams, 2019). The scope of potentially relevant social

symbols (flags, logos, hand gestures, etc.) may not be known ahead of time.

A second limitation is that CNNs may not be very good at labeling images for complex the-

oretical constructs. For example, existing research demonstrates that CNNs can successfully

capture the emotions reflected in faces present in an image (Busso et al., 2004). However,

they do less well in predicting the emotions viewers feel when viewing an image (Xu et al.,

2014; Webb Williams et al., 2020). For instance, a flag image might evoke a feeling of col-

lective identity in a viewer, not because of the flag per se, but because someone who looks

like the viewer is holding the flag – a CNN would struggle to recognize this subtlety. As

another example, a CNN may be less adept at recognizing instances of misinformation than

a trained human fact-checker (e.g. images taken out of context, misattributed actions, etc.).

In such cases, manual annotation may be the preferred option.

A final limitation is that at some point in an image labeling project, researchers may be

primarily interested in the human label generating process. For example, they might want

mer et al., 2020).
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to know whether particular groups of people (i.e. Republicans versus Democrats) have

systematically differing emotional reactions to the same images3 or it may be important to

know whether some people are better at spotting instances of visual misinformation.

To address these limitations a researcher might draw and explore a random subset of

images to create a comprehensive list of objects/features of interest for fine tuning a CNN;

to manually label images for the presence of complex theoretical constructs; or to study

how personal attributes affect responses to images. The drawback of a random sampling

approach is that image datasets can be highly unbalanced. For example, in a social media

dataset, a small number of “viral” messages and images may account for most of cases. If

the goal is to study the differences between images that go viral and those that do not (for

example), then a random sampling approach may omit much of the variation that is essential

for the analysis.

We propose an unsupervised image clustering method for the purpose of generating strat-

ified random samples from large image corpora. In line with the challenges we aim to address

here, text analysis unsupervised clustering methods (topic models) are frequently used as dis-

covery tools that help researchers develop content categories for supervised machine learning

tasks (Grimmer and Stewart, 2013; Wilkerson and Casas, 2017). Researchers have also used

unsupervised clustering to confirm that they have not missed important content categories

(Grimmer and King, 2011), and to compare differences in responses to text across groups

(Roberts et al., 2014).

In a text analysis, digitized documents are first tokenized into words. These words are

typically the features used to group documents into “topics” or associate documents with

with topics. There is no equivalent tokenizing method for images.4 Rather than words,

3Research finds that images that evoke stronger emotional reactions are more likely to capture people’s
attention and influence their attitudes and behavior (Grabe and Bucy, 2009; Casas and Webb Williams,
2019).

4Though see (Torres, 2019) for a non-CNN approach to computer vision that treats patches of images as
analogous to words.
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digitized images are composed of highly complex three dimensional (red, blue, green) ar-

rangements of pixels that vary in light intensity.5

The image features we use for clustering are called “embeddings.” These embeddings

reduce complex, 3-dimensional pixel-level information into, for example, 512 numeric values

in a single indexed vector. In a CNN, embeddings are part of the information that is used to

train the algorithm (by associating image embeddings with their manually assigned labels)

and to automatically label new images (by using an image’s embedding to predict its most

likely label).

Our clustering pipeline begins by generating image embeddings using a pre-trained CNN.

We then use an iterated variation of a widely used clustering algorithm (k-means) to cluster

images based on these embeddings. These clusters can be thought of as “visual topics.” As

with topic models, this is an inductive process where the substantive meaning of each image

cluster is open to interpretation. Similar approaches have been proposed in the computer

vision literature (Celik, 2009; Yang et al., 2016). In those cases, however, the researchers

assessed clustering performance by starting with labeled images from benchmark datasets.

While this approach provides insights into the potential of unsupervised image clustering, it

cannot be used to evaluate clustering performance when clustering images without labels ex

ante. We therefore also include a method for validating the image cluster assignments. We

strongly advise researchers using our image clustering method to build a similar validation

set to evaluate their models.

As with topic modeling, image clustering requires a number of modeling decisions that can

have implications for the output, including: the CNN algorithm used to generate embeddings;

whether the CNN should be fine tuned using additional labeled examples; and how to identify

the best clustering results. Much of this paper is devoted to how we made each of these

5The RBG representation is the most commonly used in computer vision, but images can also be rep-
resented in alternative forms, such as a single black and white matrix indicating the degree of gray in each
pixel.
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decisions for our example image corpus. At each step in the clustering pipeline, we describe

the choices available to researchers when applying the method to their own data. Our

validation procedure allows for tests to determine which hyperparameter choices are best for

a given corpus.

Our working example is a large collection of images drawn from tweets using the hashtag

#FamiliesBelongTogether. This hashtag references the Trump administration’s policy of

separating migrant children from their adult family guardians at the US-Mexican border.

After clustering images from this corpus, we draw a stratified sample by randomly selecting

images from each cluster. We then use this sample to explore the corpus and discover

unanticipated images and image features. We also describe how we used this process to

more efficiently manually annotate for a complex theoretical construct (evoked emotions).

Finally, we describe how we used it to investigate whether similar images evoke different

emotions among those that self-report as Republicans versus Democrats.

2 An Automated Visual Clustering Method

We propose a visual clustering method for large image corpora that can be used: (1) to

explore the different kinds of images present in a dataset; (2) to facilitate manual annotation

of complex visual features; and (3) to study whether and how annotator characteristics

affect their labeling decisions. For the clustering pipeline, we first need to represent images

numerically in order to be able to apply a clustering algorithm to the image corpus. As with

all clustering methods, the pipeline also requires that we select the appropriate number of

image clusters. Finally, we need to compare and select the hyperparmeter configuration that

does the best job of clustering the images in our corpus. We illustrate each of these steps

using a large example image corpus.
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2.1 Example Image Dataset: #FamiliesBelongTogether

In autumn 2017, we initiated a substantial data collection effort to study online social move-

ment dynamics. We gathered tweets from a large number of entities that are often the origi-

nators of social movement campaigns, including public affairs organizations and politicians.

In addition, we simultaneously collected the tweets by anyone who used the mobilization

hashtags these entities were using. This paper uses a small portion of the data - a #Fami-

liesBelongTogether corpus that contains 174,172 tweets and 88,075 images (18,096 of which

are unique) that were collected from May 30th to October 27th 2018. Appendix A provides

further details about the data collection process.

2.2 Converting Images to Embeddings

In a CNN, images are initially represented as three-dimensional matrices, where each matrix

represents the intensity of red, green, and blue for a particular pixel (standardized values

ranging from 0 to 255, see Figure 1).6 CNNs next transform the information contained in

these three dimensional matrices to flatter representations. The architecture of each model

varies, but the output embeddings represent images in a denser and lower dimensional space

(e.g. 512-size vectors). In the final step, the CNN computes the probability that an image is

in fact a chair (or a horse, etc.) based upon the similarity of its embedding to the embeddings

of different labeled examples (see Webb Williams et al. (2019) and Torres and Cantu (2020)

for a more detailed overview of how CNNs work).

The single dimensional embeddings are much easier to work with computationally than

three dimensional matrices. They also effectively capture thematic similarities between im-

ages prior to forcing the images into discrete classes. For example, a model trained to predict

6Although most computer vision algorithms use this three-color channel representation as input, some
use other color representations, such as the degree of gray after transforming images to black and white
(Cantú, 2019; Torres and Cantu, 2020).
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Figure 1: An image represented as a 3-dimension input. Each Xi,j,z unit contains information
about the pixel-level intensity of red, green, and blue (respectively) in the image.

the 1,000 ImageNet classes has learned that two different kinds of chairs have a lot in com-

mon prior to the CNN’s final step of assigning the images to their highest probability (chair)

category. Put another way, image embeddings from trained CNNs carry more continuous

meaning in and of themselves.

An easy way to generate embeddings is to pass images through a pre-trained CNN.

However, the “meaning” carried in such embeddings is going to be shaped by the labeled

examples used during the training process. For example, the embeddings from a CNN trained

using Imagenet will probably do a good job of capturing object similarity. It may do less well

at capturing the emotions that images evoke to the extent that two very different objects

evoke similar emotions or that the same object in different contexts may evoke different

emotions.

We selected a CNN trained on Imagenet (ResNet-18) as our starting CNN (He et al.,

2015). We chose this CNN for two main reasons. First, the Imagenet categories that the CNN

was trained to detect reflect some of the most basic objects that might be in images (this can
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be helpful in grouping together images with similar elements in them); and second, because

the size of the second-to-last fully connected layer to be used for generating image embeddings

is not too large (512-size vector) compared to other available pre-trained CNNs,7 facilitating

computation at the subsequent clustering stage. These two features make ResNet-18 a useful

general default option. Nevertheless, the validation strategy that we present below allows

researchers to assess whether using other CNNs for generating image embeddings can yield

results more suitable to their corpus..

We further opted to fine tune ResNet-18 to better reflect the goals of this project. Fine

tuning can improve a model’s ability to capture elements of interest to a researcher. For

example, a CNN pre-trained using Imagenet can be updated to predict a different set of

categories (or additional categories) by providing a relatively small set of labeled examples.

Fine tuning works surprisingly well for many image-labeling objectives (Webb Williams

et al., 2020). As a first step we had six research assistants annotate 609 unique images for

whether they included features relevant to the #FamiliesBelongTogether movement. The

features included: a) the emotions the image evoked (enthusiasm, anger, and anxiety), b)

whether the image included people of different ethnicities (white, black, Asian, and Latino),

c) gender (presence of males and/or females), d) the presence of children, e) symbols of

collective identity, and f) whether the image communicated that the movement would be

successful at accomplishing its goal. In all, the annotators labeled for the presence or absence

of 12 features.

We then replaced the last fully connected layer of the CNN that predicted 1,000 classes

with a layer predicting just 12 classes. We used the new labels for the 609 images to

retrain the model weights for 50 additional iterations. Instead of using a softmax function

that predicts the probability of each image belonging to a set of mutually exclusive classes

7For example, the second-to-last fully connected of the VGG models (Simonyan and Zisserman, 2014) is
a 4,096-size vector.
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(probabilities summing to 1), we used 12 sigmoid functions that predict the probability that

an image included each of the 12 labeled, non-mutually exclusive items (a process known as

multi-task learning, (Caruana, 1997)). We repeated the process for two models, one with a

learning rate of .005 and the second with a learning rate of .01.

In the final step we passed all of our images through this fine-tuned model, extracting

the embeddings from the second-to-last fully connected layer. As shown in Figure 2, we

had three types of image embeddings to compare: from a pre-trained ResNet-18 model

(ResNet-18 Embed), from a multitask fine-tuned ResNet-18 model using a .01 learning rate

(Fine-tuned Embed (lr .01)), and from a fine-tuned ResNet-18 model using a .005 learning

rate (Fine-tuned Embed (lr .005)).8

Figure 2: Three types of embeddings used for image clustering.

ResNet-18
(A) ResNet-18 Embed

Enthusiasm

Male

...

Multitask
Fine-Tuning

(B) Fine-tuned Embed (lr .01) (C) Fine-tuned Embed (lr .005)

x12 binary 
variables

2.3 An Iterative Image Clustering Method

Next, we use these embeddings to cluster thematically similar images (Jain, 2010). Our

initial experiment of fitting a single k-means clustering model to the full matrix of image

embeddings did not work as well as we hoped (see Figure 7). For this reason, we developed

the iterative clustering approach described below and outlined in Figure 3.

8These are two common learning rates used for fine tuning CNN for image recognition (Shin et al., 2016).
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(1) We first fit several k-means models that vary by the number of clusters N (Step Size,

e.g. +5 clusters) while measuring model fit. To speed up this fitting process, we use a

random sample of the images (Sample Size, e.g. 1,000 images). We select k based on

when average model fit stops improving across I runs of the model (Converge Window,

e.g. 3 iterations). Averaging helps to ensure that the results are not distorted by an

idiosyncratic result or by the number of clusters specified.

(2) We next fit the selected K-means model to the entire image dataset.

(3) We then assess the cohesiveness of each cluster using the average silhouette score for

the images in the cluster. The silhouette score assesses the similarity of the images in

a cluster and their distinctiveness vis-a-vis images in other clusters.9

(4) We then pull out clusters of images with silhouette scores above a specified threshold

(Similarity Threshold, e.g. 0.4) from the dataset.

(5) We then repeat this process for the images that remain, and keep repeating it until

the number of images falls below a threshold (e.g. 20 images left, Stop Size).

In the next section we experiment with different models and hyperparameter settings to

determine which combinations work best for our project. We also demonstrate that iterative

clustering is superior to using a single k-means model approach.

2.4 Validating Model and Hyperparameter Selection

To determine which modeling approach and hyperparameter configuration perform best for

our study, we needed to create a gold standard validation set. The general objective was

to have humans decide whether pairs of images belonged in the same cluster based on our

9Silhouette scores range from -1 to 1, 1 being the highest level of cohesiveness and uniqueness, and -1
being the lowest level of cohesiveness and distinctiveness.
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Figure 3: Pseudo Code of the Iterative Clustering Method

X = input image matrix (e.g. 20,000 images × 512-size embeddings)
1. Find number of K clusters to fit

(a) Randomly sample 1,000 [Sample Size] images from X

(b) Iterate through new values of K (increase K by 5 [Step Size] each time)

- fit k-means algorithm (for K clusters)

- check average goodness of fit for the last e.g. 3 iterations [Convergence Window ]

- stop if goodnes of fit does not improve OR if K > images in X. Continue otherwise.

2. Fit k-means algorithm to X predicting K image clusters
3. Calculate intra-cluster similarity (silhouette score)
4. Find cohesive clusters (cluster silhouette score > e.g. 0.04 [Similarity Threshold ]
5. Separate out from X the images from clusters found to be cohesive in step 4.

- If still more than e.g. 20 images in X [Stop Size]: STOP. Otherwise, run another iteration.

theoretically-informed constructs of interest. We then use this information to compare differ-

ent clustering approaches (models and hyperparameters) by assessing precision (the propor-

tion of pairs correctly predicted as belonging to the same cluster) and recall (the proportion

of pairs labeled as belonging to the same cluster that were accurately classified as such).

The #FamiliesBelongTogether corpus includes a large number of similar images (such

as images of street protests). To produce a more balanced validation set, we first ran the

images through an 80-cluster k-means algorithm.10 We then randomly sampled images (554

pairs in total) from these 80 clusters. Annotators viewed the pairs and determined whether

the images should indeed be in the same cluster or not. Annotator agreement as to whether

the image pairs were drawn from the same true cluster was good.11 We emphasize that

researchers wishing to use our clustering pipeline should follow this procedure to build their

own validation set.

We then performed a grid-search of different model and hyperparameter combinations,

using the validation set to compare performance. Recall that we generated embeddings

using three different models, and that five hyperparameters settings must be specified as

10A preliminary analysis where we fit k-means algorithms to the entire corpus ranging from 30 to 300
clusters suggested that, after 80 clusters, the goodness of fit only improved marginally.

1187% agreement between annotators and a Cohen’s kappa value of 0.64
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part of the iterative clustering process. Our grid search included (for each of the three model

embedding inputs) all possible combinations of the following hyperparameter settings, {3,

5} for step size, {0.0, 0.01, 0.02, 0.03, 0.04, 0.05} for similarity threshold, for a constant

sample size of {1,000}, a stop size of {20}, and a convergence window of {3}.12

Figure 4 uses a toy example to illustrate why high precision and recall imply that we

are successfully clustering images. High precision and recall indicate that the clustering

algorithm is agreeing with the human annotators both with respect to when images belong

together and when they do not. This agreement is more likely to occur when there are fewer

clusters. High recall and low precision, in contrast, indicate that the clustering algorithm

is not successfully discriminating between different types of images. High precision and low

recall, in contrast, indicate that it is not always placing similar images in the same cluster.

This is more likely to occur when there are more clusters.

Figure 5 reports precision and recall for each of the clustering models from the grid search

(based on a 5-fold cross-validation). Models in the upper right are stronger in terms of both

precision and recall. The model represented by the blue cross in the circle, for example,

uses the embeddings of the fine-tuned ResNet-18 model with a learning rate of 0.005, and a

clustering similarity threshold of 0.03.

Figure 6 provides additional information about this model. It took 33 iterations to to

reach the stop value of 20 images remaining. This produced a total of 309 image clusters.

The top panel in Figure 6 presents the number of images remaining to be classified at each

iteration. Most of the images were assigned to cohesive clusters in the first 10 iterations.

The center panel presents the number of clusters to be fit at each iteration based on the

specified goodness of fit test. This number remained quite constant, around 55 (light gray

bars). The orange bars indicate how many of these clusters were considered cohesive after

12In a preliminary analysis where we explored (in a more manual and less systematic fashion) wider ranges
of hyperparameter values, we observed that exploring other values either did not make much of a difference
or clearly yielded unsatisfactory results.
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Figure 4: Precision and recall for 3 possible ways of clustering 5 images known to be of
category A and 5 images known to belong to category B.

Figure 5: Performance of Different Hyperparameter Configurations and Types of Image
Embeddings

discriminating based on the silhouette score and the similarity threshold. We observe fewer

cohesive clusters in the final iterations. Finally, in the bottom panel we report the average
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number of images grouped in the cohesive clusters found at each iteration. We see that in the

first iteration the algorithm found some large groups of images: the cohesive clusters found

in the first iteration had an average of about 500 images, approximately. The algorithm

finds relatively large clusters until the sixth iteration. The clusters found in later iterations

are much smaller, which as we see in the top panel, is also a function of fewer images left to

be clustered.

Figure 6: Information about the iterative progress of the best performing model

Avg. Number of Images in a Cohesive Cluster

Number of clusters

Number of Images to Cluster

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
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Figure 7 confirms that practically all of the iterative clustering models from the grid

search outperform a one-shot k-means clustering approach when the average of precision

and recall (the F-score) is used to measure model fit.
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Figure 7: Performance (F-Score) of Single versus Iterative K-Means Image Clustering
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3 Corpus exploration

Figure 8 illustrates how clustering images using embeddings can help researchers explore

and possibly identify unexpected features that are relevant to their theoretical mechanisms

of interest. As discussed, symbols of collective identity can help draw support for a social

movement (Polletta and Jasper, 2001; Tajfel, 1981; Van Zomeren et al., 2008). Row 12

reveals a cluster of food images shared using #FamiliesBelongTogether. Food is a cultural

element that can be part of people’s identity (Caplan et al., 1997). A researcher interested

in annotating this dataset for collective symbology might not have initially identified food

images as a category.

For researchers interested in framing (e.g. Torres (2019)), several clusters include people

protesting on the street (such as rows 2, 3, 4, and 5), images of children behind fences

(row 18), children in cages (row 8), and images portraying immigration detention centers as

Nazi concentration camps or slave plantations (row 13). A pre-trained CNN would certainly

identify children but it would almost certainly not identify children in cages as a unique
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category. Having an accessible method for visually exploring the images in a large corpus

can be an effective way to discover such contextual information. The knowledge gained can

then be used to fine tune a pre-trained CNN to more closely match the purposes of the

framing study.

Or suppose that a researcher is interested in whether conservatives are more likely to use

certain frames than liberals. In this case the researcher could label each of the 309 clusters

for relevant frames and associate the labels with each of the tweets in each cluster. Then,

using Barbera (2015)’s method for estimating the ideology of Twitter users, the researcher

could easily test whether ideology predicts frame usage.

3.1 Constructing a stratified random sample

In a perfectly balanced dataset of 309 classes, each class would account for about 0.3% of

the images. Figure 6 demonstrates that our corpus of #FamiliesBelongTogether images is

unbalanced. One cluster, for example, accounts for 5.0% of the images. As discussed, a

random sample of this corpus could be problematic depending on the research project (such

as comparing images that do and do not go viral). To construct a stratified sample from the

clustering results, we randomly select 5 images from each cluster that includes more than

6 images, and N − 1 images from clusters with 2 to 5 images.13 This produces a stratified

sample of 1,087 images.

3.2 Labeling the sample for evoked emotions

CNNs do not currently perform well in predicting emotional reactions to images (Xu et al.,

2014; Webb Williams et al., 2020). A researcher interested in studying, for instance, whether

images that evoke anger or happiness (e.g.) are more likely to mobilize people will probably

13Five images provide us with significant diversity of images from each cluster, while also not creating an
unbalanced sample of images that are biased towards larger clusters.
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Figure 8: Sample images from 20 random clusters
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have to turn to manual annotation to measure this complex concept. A stratified sample

ensures that we obtain information about the emotions evoked by a wider set of images.

To illustrate this, we asked human annotators to rate the images in our stratified sample

for 10 emotions known to load onto three distinguishable emotional dimensions (Marcus

et al., 2017): Enthusiasm (hopeful, enthusiastic, proud); Aversion (angry, resentful, bitter,

hateful); and Anxiety (worried, scared, and afraid) (Marcus et al., 2000). The annotators

self-reported as either Democrats (N = 360) or Republicans (N = 360) were recruited via

the polling company Qualtrics. We asked each respondent to rate 8 of the images for each of

the 10 emotions (on a 1-10 scale). Every image in the sample was labeled by one Republican

and one Democrat. No respondent labeled more than one image from the same cluster.

Figure 9: Reported emotional reactions to images from different clusters

Figure 9 presents our findings and demonstrates how much important emotional variation
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we would miss if we took a random selection of images instead of the stratified random sample

from clusters. Each column in Figure 9 is one of the 309 clusters, with the largest clusters

to the left. The red vertical lines indicate the total number of images accounted for by the

clusters to the left (50%, 75% and 90% of all images). The cells in each column correspond

to the average emotional ratings for a cluster for all respondents. Darker shading indicates

a more intense emotional response.

We selected some examples to illustrate the analytical value of our approach. For exam-

ple, the red dot in the figure points to the 5th largest cluster, a set of images with people

holding protest signs. On average, the images in this large cluster scored quite high on all

emotions, but particularly on those emotions belonging to the aversion dimension. In con-

trast, images in the 17th largest cluster (just to the left of 50% mark, blue dot) evoked more

intense “enthusiasm” responses. These are images with posters announcing future mobiliza-

tions. Importantly, the images in some of the smallest clusters (to the right of the 90% mark)

also generated strong emotions. These would have been mostly ignored if a random (rather

than a stratified random) sample would had been used. For example, we observe the images

in one of these much smaller clusters (182nd, purple dot) to have generated high aversion

and anxiety (and no enthusiasm). These are slightly different version of the same image,

showing a migrant child being separated from her family, with a picture of a Hitler-looking

President Trump in the background. As a final example, we point to another small cluster

(272nd, orange dot) that respondents rated as generating enthusiasm (and no aversion nor

anxiety): images of MAGA-type hats but with the motto “Immigrants Make America Great

Again”.

3.3 Partisan differences in evoked emotions

Finally, we draw on the emotional intensity ratings from Figure 9 to compare average differ-

ences between Republican and Democrats. In Figure 10 the non-gray areas average across
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clusters for the individual emotions. The gray areas do the same thing, except that they

average across the emotions within each of the three affective dimensions. Once again,

the stratified sampling approach means that the averages weight all of the clusters equally,

whereas the averages from a random sample would have been dominated by results from a

relatively small number of large clusters.

Figure 10: Average emotion reactions, by Democrats and Republicans, to a stratified random
sample of 1,087 images shared on Twitter with the #FamiliesBelongTogether hashtag
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Where #FamiliesBelongTogether images were concerned, Democrats were more likely to

respond with enthusiastism (“hopeful” and “proud”) and anxiety (“worried”, “scared” and

“afraid”). According to the Affective Intelligence Model, these emotions are strongly corre-

lated with political action (Marcus et al., 2000; Casas and Webb Williams, 2019), potentially

indicating that the images associated with them will be effective at mobilizing Democrats

more than Republicans. Democrats for example felt much more enthusiasm than Repub-
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licans when exposed to the images of protesters in the 5th cluster (red dot) in Figure 9.14

Democrats also felt more anxious when exposed to the cluster with images of children in

cages (row 1 in Figure 8).15 Finally, although on average Democrats were more likely to

express anger in response to #FamiliesBelongTogether images, overall, respondents in both

parties reported similar degrees of resentment, bitterness, and hate.

4 Discussion

Compared to text and audio, images can be an especially effective form of political commu-

nication. There are now many options for automatically labeling images for many features

of interest (such as protests, famous people or facial expressions). These developments

have inspired an increasing number of social scientists to conduct large-N image analyses.

This paper addresses three emerging needs of image scholarship. The first is a feasible and

representative way of visually exploring image corpora. The second is to support manual

annotation projects when automated approaches are incapable of annotating images for the

presence of complex theoretical mechanisms. The third is to support projects where the

primary goal is to study human annotation decisions. We demonstrate how unsupervised

image clustering can help researchers address each of these needs when faced with large

and possibly unbalanced image corpora. We illustrate the method using a corpus of images

shared by Twitter users along with the hashtag #FamiliesBelongTogether.

The approach we propose will benefit researchers studying image data from a descriptive

perspective, as an explanatory variable, and/or as an outcome variable. Unsupervised clus-

tering facilitates exploration of large image corpora. As with topic models for text, clustering

can assist with labeling by helping researchers discover unanticipated image themes. Clus-

tering can also be used to create the more balanced samples that are necessary for testing

14Hopeful: 6.55 (D) v. 2.25 (R). Enthusiasm: 7.25 (D) v. 3.25 (R). Proud: 6.5 (D) v. 2.5 (R).
15Afraid: 8 (D) v. 3.5 (R). Scared: 8 (D) v. 3.5 (R). Worried: 8 (D) v. 4.5 (R).
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relevant questions, such as what differentiates images that are widely shared through social

media from those that are not. And for projects where manual annotation is the only feasible

option (such as when the goal is to label images for the emotions they evoke), clustering can

speed up the labeling process by organizing similar images together, guided in part by the

researchers’ goals (using fine-tuned CNN embeddings as features), enabling annotators to

work through them more efficiently.

As with text topic models, in an unsupervised set up there are no gold standard labels

for selecting the best image clustering model (that would defeat the point). Our selection

methodology relies on silhouette scores that consider the cluster cohesiveness and distinc-

tiveness, similar to what topic modelers recommend for choosing a model (Roberts et al.,

2014). However, we also use a purpose-built validation test to demonstrate that an itera-

tive clustering approach yielded consistently superior results when compared to a single-shot

clustering approach. We also used that gold standard validation test to compare different

feature selections (embeddings from CNNs with and without fine tuning, and with different

learning rates) and model hyperparameters (Figure 3). Using precision and recall to mea-

sure performance, we were able to identify which combination produced the best clustering

results for our image corpus.

Unsupervised clustering, and the approach we have proposed for applying it to address

specific limitations of automated image labeling, represents an important and useful advance

in the emerging images-as-data literature in the social sciences. There is also much more to

explore. We have focused on the best performing approach for our project. We do not know

whether this approach would prove to be the best for another corpus and research objective.

Each project will require specific configuration and hyperparameter decisions, as we have

detailed. For example, we might have generated embeddings using a different CNN (e.g. a

ResNet with more layers, VGG, AlexNet, etc.). We also tested only a limited number of

possible learning rate and hyperparameter combinations.
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We hope that unsupervised clustering encourages more scholars to explore image data in

their areas of expertise, leading to new hypotheses to test and new data to explore. Most

current images-as-data studies focus on digitized images shared on social media and ques-

tions about visual communication (with notable exceptions using image data to examine

voter fraud and remote-sensing imagery). Unsupervised clustering methods may also ex-

pand image analysis to many more fields of interest. Other interesting applications include

evaluating Google Street View images to estimate gentrification and ethnic diversity (Hwang

and Sampson, 2014) and categorizing children’s drawings of politicians (Holman et al., 2020).

New images-as-data methods widen the scope of what is possible in this growing subfield.
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Appendix A Data Collection

We collected tweets that contain mobilizing hashtags used by public affairs organizations,
news media, and legislators (all based in the USA) from January 1st, 2018 to December 31st,
2018. We collected all tweets from 1,144 American public affairs organizations, 534 American
political actors, and 30 American news media outlets. We tracked posts on Twitter because
this social media platform has become an effective mobilizing tool for social organizations and
political messaging in the United States and is one of the most open social media platforms
in terms of data sharing.

The 1,144 American public affairs organizations we tracked were identified using the 56th
edition of the Encyclopedia of Associations National Organizations of the United States
(EoA), published in 2017. The EoA contains information on roughly 23,000 organizations,
but after limiting our list to organizations in the “Public Affairs” subject category and
manually removing inactive or deleted Twitter accounts we built a list of 1,144 Twitter
accounts to track (74.7% of the total population of EoA Public Affairs associations). In
addition, we supplemented the EoA list of Twitter accounts with the official accounts from
thirty of the most prominent news organizations in the United States and from every member
of the 115th United States Congress. For news media outlets, we referenced numerous lists
of the most watched and read news organizations and the most Tweeted news organizations.
We tracked 30 media accounts and 434 accounts from U.S. Representatives and 100 accounts
from U.S. Senators (some U.S. Representatives did not have Twitter accounts). This left
us with Twitter accounts from 1,144 American public affairs organizations, 534 American
political actors, and 30 American news media outlets. Full information on the Twitter
accounts that we tracked are available upon request.

Between January 1st, 2018 and December 31st, 2018, we collected all tweets produced
by these tracked accounts. At the end of each day we pulled a list of hashtags that were
used more than twice by the same tracked account. Hashtags are a means of organizing
on Twitter, so by monitoring this feature, we can identify mobilization attempts by these
accounts. From each daily list of hashtags, we removed all hashtags that do not have a
capitalization in the middle or were shorter than 12 characters. These requirements ensured
we were tracking unique hashtags that were being used prominently by at least one of these
organizations. Once added to our list of hashtags, we immediately began collecting any
tweets by any Twitter user that used that hashtag. Each hashtag was tracked for two days
and then removed if it was not used more than twice by the same organization over the next
two days. Due to the sheer number of posted tweets, we were unable to collect all the tweets
using our tracked hashtags, but we were able collect around 1,000,000 tweets per day from
an average of 600 hashtags. This process populated a database of tweets that used any of
our tracked hashtags on the days we were tracking that hashtag.

In total, we have roughly 4 million tweets from our initial tracked accounts and around
400 million tweets collected by tracking hashtags. In addition to data from each tweet such as
the tweet text, count of retweets/favorites, count of account followers, and count of friends,
we also collected any pictures posted with the tweets. We did not collect videos, but we did
collect the image displayed on the tweet representing the video (the thumbnail image).
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